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DISCONTINUOUS VERSUS SMOOTH REGRESSION1 

BY HANS-GEORGMULLERAND ULRICHSTADTMULLER 

University of California, Davis and Universitat Ulm 

Given measurements ( x , , y,), i = 1, .. . ,n, we discuss methods to 
assess whether an underlying regression function is smooth (continuous 
or differentiable) or whether it has discontinuities. The variance of the 
measurements is assumed to be unknown, and is estimated simultane- 
ously. By regressing squared differences of the data formed with various 
span sizes on the span size itself, we obtain an asymptotic linear model 
with dependent errors. The parameters of this asymptotic linear model 
include the sum of the squared jump sizes as well as  the variance of the 
measurements. Both parameters can be consistently estimated, with mean 
squared error rates of convergence of n 2/"or the sum of squared jump 
sizes and n for the error variance. We derive the asymptotic constants 
of the mean squared error (MSE) and discuss the dependence of MSE on 
the maximum span size L. The test for the existence of jumps is formu- 
lated for the null hypothesis that the sum of squared jump sizes is 0. The 
asymptotic distribution of the test statistic is obtained essentially via a 
central limit theorem for U-statistics. We motivate and illustrate the 
methods with data surrounded by a scientific controversy concerning the 
question whether the growth of children occurs smoothly or rather in 
jumps. 

1. Introduction. 

1.1. Background. It is customary in applications of nonparametric re- 
gression analysis to assume that the function to be estimated is smooth; in 
fact, this assumption provides the basic motivation as well as technical 
justification fbr using smoothing methods. However, as was learned in recent 
years, in a number of important applications, the underlying function is 
smooth everywhere except a t  a critical number of points where jump disconti- 
nuities may occur. Examples from various scientific fields are the Nile data 
[Cobb (197811, the coal mining disaster data [Jarrett (197911, single channel 
patch clamp recordings [Fredkin and Rice (199211, the segmentation of DNA 
sequences [Churchill (199211, stock market data [Wang (199511 and the 
crown-heel lengths growth data of Lampl, Veldhuis and Johnson (1992). 
Some methods that have been proposed for nonparametric regression analy- 
sis like wavelet implementations with coefficient shrinkage [see, for instance, 
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Donoho, Johnstone, Kerkyacharian and Picard (1995)l in fact regularly turn 
out curve estimates with nonsmooth features. 

If discontinuities or change-points are indeed present within an otherwise 
smooth regression function, their locations can be estimated efficiently with 
methods that have been developed recently; compare the proposals by Muller 
(1992), Wu and Chu (1993), Eubank and Speckman (1994) and Wang (1995). 
Once the locations have been obtained, one can then adapt common smooth- 
ing techniques to the presence of jump discontinuities by treating the 
change-point locations as endpoints of the support; this can be achieved with 
boundary kernels if one uses convolution-type kernel estimators or with 
modified locally weighted least squares-type kernel estimators [Muller (1993)l. 
For further work on the intersection between smoothing and change-points as 
well as on inference for change-points compare, for instance, Hinkley (1970), 
Bhattacharya and Brockwell (1976), Hall and Titterington (1992), Carlstein, 
Muller and Siegmund (1994) and Muller and Song (1997). 

An important motivation for the work reported here is that if one does 
assume that the function of interest contains discontinuities, then the result- 
ing curve estimates with discontinuities are not only quantitatively but also 
qualitatively different from smooth curve estimates, which one desires to 
obtain if the underlying curve is indeed smooth. The appearance of estimated 
curves when discontinuities are assumed to be present is strikingly different 
from estimated curves under global smoothness assumptions, paving the way 
for substantially different conclusions. A case in point is the application to 
growth data, to be discussed in more detail in Sections 2 and 5. 

Application of common smoothing methods like smoothing splines, kernel 
and locally weighted least squares estimates (with the possible exception of 
wavelets) invariably will lead to smooth curve estimates, whether discontinu- 
ities are present or not. If discontinuities are present, they will be over-
smoothed and will not be visible in resulting curve estimates. 

It is therefore of interest to gather as much knowledge as possible regard- 
ing the question whether such jumps really exist in the data. For curve 
estimates based on wavelets, jumps may appear but could be artifacts of the 
method. If indeed no jumps or sharp cusps exist, smooth curve estimates 
should be used. However, if jumps exist, modified smoothing methods which 
allow for the inclusion of nonsmooth parts must be used. Essentially, this is a 
problem of model selection, where the choice is between a class of smooth 
regression functions and a larger class of functions which include discontinu- 
ities. 

It is, then, an important data-analytic problem to develop tools for diagnos- 
tic assessment and inference with the aim of aiding the statistician in the 
decision whether an unknown function, which cannot be parametrically 
specified, should be modelled as a globally smooth function or as a function 
which is smooth but contains isolated discontinuities. The statistics proposed 
in this paper are designed to provide relevant infbrmation for this decision. 
Furthermore, they may also be of general interest as diagnostic tools in 
applied regression analysis. 
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1.2. Proposed model. We describe now the basic modelling fi-amework 
within which we discuss diagnostics and tests for discontinuities. Consider 
the following classes of functions. For given constants M, < > 0, let 

Sc(M) = (f:  [O, 11 - R, f is continuously differentiable, 
(1.1) sup i f l ( x )  r M),  

0 2 x 2  1 

where m E {1,2,3,...) is an arbitrary integer, c,, c,, ...,c ,  .,is an arbitrary 
sequence of reals, and 

for an arbitrary sequence r i  with 

< r ,  = 1and min (r i  
l i i s m  

Here, Sc(M) denotes a class of continuously differentiable functions, 
whereas SD(5) is the class of discontinuous step functions with an arbitrary 
but finite number of steps and a minimum distance < between successive 
jump points. We note that the restriction to functions with support [O, 11 is 
made only fbr ease of notation. 

The class of regression functions to be considered in our statistical model 
then draws on Sc and SDas follows: the underlying regression function is 
assumed to be composed as a sum of a function from Sc(M) and a function 
from S,(<). In particular, we do not wish to limit the possible number of 
jumps which occur in the discontinuous part; the development in the follow- 
ing will include the case where the number of jumps is not fixed but may 
increase as the sample size n increases. This reflects the expectation that one 
should be able to detect more and more finely grained discontinuities for 
larger and larger sample sizes. It is therefbre natural to assume that the 
regression function for which we wish to ascertain whether it is continuous or 
not is allowed to depend on n. 

One quantity which needs to remain fixed for varying sample sizes n and 
indeed emerges as our natural measure of the amount of discontinuity in the 
data is 

which is defined fbr any h E S,. Here and in all of the following we adopt the 
convention that C ~ L ~ ~= 0 if i2 < il, so that y = 0 if m = 1.ai 

A second quantity of auxiliary nature which also needs to remain fixed 
throughout and measures the "interaction" between continuous and discon- 



tinuous parts is obtained given a continuous function g E Sc and a step 
function h E S,, 

We now define for y 2 0, 6 E R the class of functions 

S,,a(M7 5 )  

= { f :[o, 11 + R,  f ( x )  = g ( x )  + h(x)7 g E Sc(M)7 h E S,(5)> 
(1.5) 

It is assumed that the data are recorded according to the fixed design 
regression model 

(1.6) Y i , n  = fn(x i , J  + Ei,,, i = I , . . . ,  n7 

where x,,. = i/n (equidistant design) and f, E S,, ,?(M, 51, fbr a fixed large 
M and a sequence 5 = tn to be specified in (Al) below. The errors E ; , ~are 
i.i.d. and are assumed to satisfy 

(I.7] E E ~ , ~  EE:, = m 2  and EE:, = p, < a.= 0, 

Note that the regression function fn is allowed to depend on n. Within the 
class of functions S,, , (M, E), y = 0 defines the subclass of "smooth" fixnc- 
tions, whereas y > 0 guarantees that the functions have jump discontinuities. 
The null hypothesis of a smooth regression function thus corresponds to 
y = 0, while the case of a discontinuous regression function corresponds to 
y > 0. We note that in particular, the number of jumps m = m(n) may 
depend on and grow with n, and also that the sizes of individual jumps 
(el+,, - el,n )  may depend on n. In the following, we omit subscripts n 
whenever feasible. 

The estimation of pure step functions f(x) = L~=,, 'c, lI(x) for a fixed 
number of jumps was thoroughly investigated in Yao (1984) and Yao and Au 
(1989). We note that fbr a given function f E S,, ,(M, t ) ,the decomposition 
f = g + h with h E SD(5), g E S ( , ( M ) ,is unique up to a constant which can 
be shifted between h and g .  This does not matter fbr our purposes. 

1.3. Aims and overview. Our aims are to estimate the two parameters 
( r2= Et.: and y = Crlil(c, , ,- c ~ ) ~  = 0and to test the null hypothesis H,,:y 
of a smooth function. We note that there is an extensive literature on the 
estimation of the error variance u 2  when the regression function f is 
"smooth," say, f E Sc(M). These estimates work by using squared differences 



303 DISCONTINUOUS VERSUS SMOOTH REGRESSION 

of the data of various orders [see, for example, Rice (1984), Gasser, Sroka and 
Jennen-Steinmetz (1989), Hall, Kay and Titterington (1990)l. A simple ex- 
ample is the estimate 

which was proposed in Rice (1984). 
If f E S,, ,with y > 0, these difference scheme estimates are disturbed by 

the jumps, which inflate the finite variance estimates; however, this inflation 
effect disappears asymptotically for a fixed finite number of jumps. It will not 
disappear, however, on sets S,, ,with y > 0, where the number of jumps is 
potentially unlimited. It is therefore of considerable interest to estimate the 
error variance rr simultaneously with y, in the presence of jumps. These 
two parameters are complementary in the sense that seemingly erratic data 
y,could be caused by either a high level of noise variance or by the presence 
of' jump discontinuities. Discrimination between these two opposite causes is 
a fairly difficult task, and this paper will provide some relevant tools to attack 
this problem. 

The paper is organized as follows: a controversy on the existence of 
saltatory growth serves as data-analytic motivation for the comparison of 
discontinuous versus smooth regression. This controversy is introduced in the 
following Section 2 and its discussion is resumed in Section 6. The proposed 
statistics and test procedures as well as the asymptotic linear model which 
forms the backbone for our approach are described in Section 3. The main 
asymptotic results on consistency, rates of convergence and asymptotic nor- 
mality are in Section 4. Results of simulations and finite sample aspects are 
discussed in Section 5. The main proofs are compiled in Section 7. Predomi-
nantly technical calculations are deferred to Appendix A.1, while Appen- 
dix A.2 provides more details on a preliminary study of fitting multiple 
change-points in a nonparametric regression setting. 

2. A Controversy on saltatory growth. 

2.1. The "saltation and stasis" hypothesis. In 1992, Lampl, Veldhuis and 
Johnson published a study on the growth of infants in the journal Science. 
They claimed that their study confirmed the "saltatory growth or "saltation 
and stasis" hypothesis: this hypothesis refers to the existence of' jump discon- 
tinuities in the growth of infants. The authors claimed that the existence of 
jump discontinuities can be inferred from daily measurements of crown-heel 
length. This finding was supported by anecdotal accounts of rapid overnight 
growth of children who were reported to have gained more than one inch in 
height during a single night. Lampl, Veldhuis and Johnson (1992) also added 
a "stasis" component, periods between saltations during which very little 
growth was supposed to occur. 
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The findings of Lampl, Veldhuis and Johnson (1992) were disputed in a 
1995 Science article by Heinrichs, Munson, Counts, Cutler and Baron. In 
their response, Lampl, Cameron, Veldhuis and Johnson (1995) upheld their 
original findings. Whereas Lampl et al. argued on the basis of their growth 
measurements, Heinrichs et al. reported their own crown-heel lengths mea- 
surements and interpreted their data as  not containing any evidence for the 
saltation and stasis hypothesis. They also pointed out that the biological 
requirements for saltatory growth not only violate the dogma "Natura non 
facit saltus" but are genuinely daunting. To initiate a saltatory growth spurt, 
all cells in the growth zones of the bones, the epiphyses, would have to 
synchronize their cell cycle in order to achieve a noticeable overall height 
gain by dividing simultaneously. All this activity would have to be squeezed 
into a very brief time interval. 

In the following, we discuss the data on crown-heel lengths of a single 
i nhn t  as  reported in Figure 1of Heinrichs et al. (1995). These data are 30 
daily height measurements from approximately 67 to 97 days of age, and 
were also used by Lampl et al. (1995); see their Figure 1, in an attempt to 
refute the interpretation of Heinrichs et al. Lampl et al. claimed to demon- 
strate that these data do contain evidence for saltatory growth. We are aware 
of the limitations of inference that can be drawn from data of one infBnt only, 
and any conclusions are a t  best tentative. Nevertheless, this auxologic debate 
provides additional motivation for the procedures proposed in Section 3 
below. 

A scatterplot of these data (crown-heel length measurements versus age in 
days) appears in the panels of Figure 1. The simplest approach to modelling 
is to fit a straight line, assuming that infant growth over a limited time 
period of 30 days is approximately linear. Alternatively, one could assume 
that the data are generated from an  underlying smooth (nonparametric) 
growth curve, allowing for smooth deviations from a linear trajectory. One 
would then apply any one of a variety of smoothing methods. A smooth fit 
using the method of local linear fitting by locally weighted least squares [see, 
e.g., Fan and Gijbels (1996)] with appropriate bandwidth choice is shown in 
Figure 1 (upper left panel), together with the simple linear least squares 
regression fit. 

2.2. Preliminary change-point analysis of  infant growth data. An alterna-
tive to the smooth fits in the upper left panel of Figure 1 is to apply 
nonparametric regression with change-points [see, e.g., Hall and Titterington 
(1992), Miiller (1992), Wu and Chu (19931, Loader (1996)l. In such methods, 
one typically first assumes a fixed number v of jump discontinuities in an 
otherwise smooth regression function. Then the v change-points are located 
according to a local criterion, searching fbr maximal jump sizes. In a last step, 
a smooth fit is obtained on the (v + 1) segments defined by the v estimated 
change-point locations. This produces smooth curve estimates on the seg- 
ments, with discontinuities where segments adjoin. An application of this 
idea with local linear fitting to the infant growth data for v = O,1,2,3 is 
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FIG.1. Crown-heel lengths data [ f rom Heinrichs, Munson, Counts, Cutler and Baron, 19951 for 
one infant boy, length measured daily in cm,  from age 68 to 97 days ( n  = 30). Superimposed are 
several regression fits: Upper left: simple least squares regression line (dashed) and smooth fit by 
weighted least squares fitting of local lines (solid). Upper right: monotone smooth fit with one 
jump discontinuity, using local line fitting. Lower left: monotone smooth fit with two jump 
discontinuities. Lower right: monotone smooth fit with three jump discontinuities. 
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I I I I 
0 1 2 3 4 

Number of Jump Points 

FIG. 2. Cross-validation sum of squares as function of the n u m h ~ r  of jump points for the 
crown-heel lengths data. 

demonstrated in Figure 1.The fits with one (upper right panel) or two (lower 
left panel) change-points appear quite plausible. 

One point of particular interest is a comparison of the quality of the 
smooth fits with v change-points, where v 2 0. One straightforward method 
is minimization of the cross-validation sum of squares 

for given scatterplot data (x,, Y,), i = 1 , .. . ,n. Here, .?,! "(x,) is the fit 
obtained a t  x,, assuming v change-points and excluding the data point 
(x,,y,) when constructing the fit. The resulting plot for CVSS(v) for the 
infant growth data is in Figure 2. Taken together, Figures 1and 2 support 
the idea that inclusion of some degree of saltation provides the best explana- 
tion for the data. We continue this discussion in Section 6, applying the new 
methods which are developed below. It  is clear from Figure 1 that a major 
distinction exists between smooth (v = 0) and nonsmooth (v > 0) models, 
demonstrating that the model selection issues which are addressed next are 
of interest beyond this particular example. 
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Additional pertinent details on this preliminary change-point approach can 
be found in Appendix A.2. 

3. Asymptotic linear model and proposed estimators. As outlined 
in the introduction, we assume that  the regression function is in S,, ,. We 
then consider the null hypothesis H,: y = 0, that  the function is smooth, 
which is to be tested against the alternative HA: y > 0, that  the function 
contains jump discontinuities. 

The inference procedures which we propose are based on sums of squared 
differences of the data. These differences are formed with various span sizes. 
Specifically, we consider the statistics 

Here, L = L(n) 2 1is a sequence of integers depending on n. Theoretical and 
practical choice of L is discussed in Sections 4 and 5.2. 

As will be shown, the statistics Zk can be interpreted as  dependent 
variables within the following asymptotic simple linear model, which con- 
tains the parameters of interest m 2  and y as  intercept and slope parameters: 

The asymptotic linear model (3.2) is characterized by the behavior of the 
residual errors 

We write q = (ql,.  . . , qL)T,lLfor a L x L-matrix with all entries being 1, 
and 11, for the L x L identity matrix, and list the following additional 
assumptions: 

min ( r j  - r j l )  2 tn;,= 2L/n,  
l < j < m  

where rj and m are as  in (1.2). This condition ensures that  different change- 
points and their associated jumps do not get too close asymptotically so that  
they can be separated by the proposed method. Furthermore, as n + m, 

For all of the following, we assume that  (Al) and (A2) hold. We obtain 

and setting S1, = 1if I = k and al, = 0 otherwise, 

uniformly in 1Ik ,  I I L. 
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Hence one may identify a leading covariance matrix for q, 

where C, is seen to be a nonsingular L x L matrix. 
For a proof of (3.4), (3.5), we refer to the proof of Theorem 4.1 in Section 7;  

compare also the remark after Theorem 4.1. Note that in the case of normal 
errors, si-.N(0, (T '1, p4- (T = 2 a 4  and therefore codrl) = (4m4/n){2,+ 
I,), ignoring terms of smaller order. 

Setting P = 2 c 2 ,we may rewrite the linear regression model (3.2)as 

k 
2, = p + ---y+77/ , ,  l s k ~ L ,(3.7) n - L  

with the design matrix 

One finds immediately 

and 

(3.10) 
( L  + 1) (2L + 1 ) / ( 6 ( n- L))' - ( L  + 1 ) / ( 2 ( n- L ) )  

1 

The least squares estimator for (F) is then given by 

and for (<) by 
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Since the data are not i.i.d., but have covariance structure (3.5), one should 
actually benefit from using the weighted least squares estimator with weights 
determined by the asymptotic covariance matrix of 2 ,  which is given by C, 
(3.6). However, according to a result of McElroy (1967), matrices C, (3.6) 
happen to be of a type where the weighted and ordinary least squares 
estimators coincide. Therefore, (3.11) and (3.12) simultaneously provide 
weighted and unweighted least squares estimators. 

The covariance matrix of (g)is given by 

where en= Cov(Z) = COV(~). 

4. Asymptotic results and testing for jumps. Our first result pro- 
vides the asymptotic behavior of the first two moments of estimator (3.12). 

THEOREM Under (All-(A3), we have that 4.1. 

and 

provided that y = 0. If EE;  = 0, then we have for arbitrary y 2 0 that 

The proof is in Section 7. Observe that this result does not follow directly 
from (3.11)-(3.13), by combining the usual variance formula for a linear 
regression estimator such as (3.13) with the leading term (4/n)C, in Cov(2) 
= Cov(v). That this intuition does not work has two reasons: first the 
dimension of the sequence of L x 2 matrices A = A, increases with n [as 
L = L(n)], that is, the estimates (g)are obtained from a sequence of linear 

models with changing dimensions. Second, there are cancellation effects due 
to the fact that the sum of the weights in 7 ,  is zero; see the first two 
paragraphs of Section 7.1 and Lemma A1 in the Appendix. 
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It is an immediate consequence that both (if, 7, are consistent. The mean 
squared error rates of convergence are seen to be 0((1/n) + ( ~ ~ / n ~ ) )for (if 
and 0((1/L) + (L2/n2)) for 9,. On sets S,, ,with 6 > 0, our proofs show that 
these rates cannot be improved. To verify this, use E(T,) - 6k2/n2 [see (4.11) 
below and Lemma Al(vi)] to obtain 

Therefore, the optimal mean squared error rates are n for &f and n 2 /3  

for 7,. The asymptotically optimal choice for L with respect to mean squared 
error according to (4.3), (4.4) is obtained by minimizing [6(L/n)]% A/L 
with respect to L, which yields 

where A = 12(p4- a4 ) /5  + 48ya2/5. 
We next discuss the asymptotic limit distribution for the estimates ((if, 

[see (3.12)]. Note that throughout this paper the case that the errors r i  = si,,I 
come from a triangular array is included. This assumption is often more 
realistic to describe how the designs vary with n. For the following result, we 
need in addition to (A1)-(A3), 

THEOREM4.2. Under the assumptions (A1)-(A4), Esg = 0 and p, > a 4 ,  
we have 

For the proof see Section 7. We note that for the degenerate case p4= a" 
(i.e., s, - a(Bl,  - l), where B,, ,/, denotes a Bernoulli random variable 
with p = 1/2), one can also derive asymptotic normality with, however, 
different rates and variance. We will not pursue this case here further [for 
more details, see Dubowik (1996)l. We note that if we use the optimal L* (4.5) 
which is of order n2/" a bias term must be included in the limit distribution. 
A similar effect is known to occur in curve estimation when optimal smooth- 
ing parameters are inserted. 

One important application is the construction of an asymptotic level a test 
for the null hypothesis of no change, 

H , :  y = Oversus H a :y > 0, 
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when we assume that p4- a 4> 0. The test statistic 

targets a standardized version of 9 ,  (3.12). It is asymptotically normal by 
Slutsky's theorem, if we insert consistent estimators fi4, ii for p4, a2. We 
suggest applying the following consistent estimators: ii2= GI2 as defined by 
(3.12) and fi4 = 3ii2 in case the errors can be assumed to be approximately 
normally distributed. 

If the errors are not normal and fi4 must be estimated independently of 
ii2, asymptotically consistent estimators for p4 can still be found in the case 
where the regression function f has only a fixed finite number of jump 
discontinuities, irrespective of the sample size n. This restriction is not 
necessary for our other results, where the number of discontinuities may 
change with n and could diverge. One then may show that 

provides such an estimate with fi4 +, p4 as n -, w. The reason is that the 
bias induced by the jumps is O(n -I) if there are only finitely many jumps. In 
a finite sample situation, however, this bias may be nonnegligible. 

Analogously, as an alternative estimate of a 2 ,  one could consider the 
difference-based estimate [compare Rice (1984)l 

which is also consistent for a if there are only finitely many jumps. For both 
estimates (4.8) and (4.9), improved versions for practical applications are 
possible after locating the change-points as illustrated in the growth example 
below. One then would omit differences of y's in (4.81, (4.9) which cut across a 
jump. 

Then, if y = 0, we have asymptotically, 

from which level a-tests for H,: y = 0 can be derived. We note that by a more 
refined analysis using Riemann sum approximation and Taylor expansion, we 
can write 

where 8 = ( j t  g 12(t) dt  + 2 j t  g1(t)  dh(t)) and E = 0 2 .  This 
motivates a three-parameter asymptotic linear model with parameters P ,  y, 
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6. Similar arguments as before lead to the following least squares estimates 
for (T and y:  

a 7  


Plugging estimates (4.12) into model (4.11), we obtain 

an improvement over (4.1). Furthermore, one can show that 

provided that L"/n2 = O(1) and y = 0. A basic result for the proof of (4.13) 
and (4.14) is Lemma A5 in the Appendix and further calculations can be 
found in Dubowik (1996). 

Note that the bias of 7, is o(L/n) rather than being asymptotically L/n 
as is the bias of 7,.This stems from the fact that while 7, is based on the 
second-order Taylor expansion (4.111, 7, is based on the first-order Taylor 
expansion (3.7). Therefore, we can let L increase up to order L - n2/" 
without incurring an asymptotic bias. In place of assumption (A4), we then 
only need 

(A51 L2/n% c < m; 

also compare the discussion after (4.6). 
Note that (4.14) implies that the asymptotic variances of 7, and of 7, 

(obtained from the two-parameter or asymptotic simple linear regression 
model) are related by var(?,)/var(q,) = (5/12)(384/35) = 32/7. Thus the 
estimate 7, is more variable when compared to 7,. Still we recommend using 
this asymptotic quadratic model in particular for the cases where 6 > 0, that 
is, where the smooth part of the function cannot be neglected. In such cases, 
for sizable 6 > 0, 7, is contaminated by nonnegligible bias in particular for 
large L, whereas 7, is less affected by such bias; compare (4.13). See Section 
5 for simulation comparisons of 7,  and 7,. 
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5. Finite sample behavior. The proposed tests and estimates depend 
on the choice of the maximal span size L, which assumes a role similar to 
that of a smoothing parameter in smoothing methods. The asymptotic vari- 
ances of these estimates become smaller if L is increased, according to 
Theorem 4.1. However, large choices of L may lead to violation of (Al) 
whenever the regression function has several jumps. Conditions (A4) and (A5) 
effectively place an upper bound on L. If L is too large, this may lead to 
biases in .j/. Thus L must be chosen to negotiate a compromise between 
variance and bias; theoretically the mean squared error provided by Theorem 
4.1 can be minimized by using L* (4.5). However, this is not feasible in 
practice and a data-based "plateau" method is proposed in Section 5.2. We 
first report the results of simulation studies regarding the behavior of the 
estimates of y and a%hen varying L. 

5.1. Monte Carlo results. In order to study the behavior of estimates .j/,, 
6; (3.12) obtained by fitting the asymptotic simple linear regression model to 
the data (h/n, Z h )  and of estimates .j/,, ii,2 (4.12) obtained by fitting the 
asymptotic quadratic model, we looked at various simulated settings. For the 
summands g E Sc and h E S, of the function f E S,, ,, where f = g + h, we 
chose the following functions, all on support [O, 11. For the step function h, 

The constants c,, el, c, in h were chosen to achieve the following values for 
the sum of squared jump sizes y = (el - c0)' -1 (c, -- (1) y = 0, with the 
choice c, = el = c, = 0 (no jump); (2) y = 1.0, choosing co = 0, el = c, = 1 
(one jump) and (3) y = 3.25, choosing c, = 0, c, = 1, c, = -0.5 (two jumps). 
For the smooth part g ,  the three functions g,(x) - 0, g,(x) = x and g,(x) -
4x(l - x) were investigated. The error variance in the basic model was 
chosen to be either a 2= 0.25 or a 2= 1.0, and the errors r, were generated 
as normal random variables. 

By varying the parameters, we obtained various scatterplots of data 
generated from model (1.6). A variety of examples are shown in Figures 3 and 
4 for n = 100 and a2= 0.25 and in Figures 5 and 6 for n = 1000 and 
a2= 1.0. The upper two panels display the scatterplots, and the lower panels 
the estimates .j/,, respectively, .jl, of y (solid lines) as well as (if, respectively, 
6: of (T (dashed lines) in dependency on the auxiliary parameter L. The left 
panels are for the case of no jumps, y = 0, and the right panels for y = 3.25 
(two jumps). 

The main findings are as follows: for all examples, the estimates 6:, 
respectively, 6: are quite stable, that is, do not vary much with L and are 
also quite accurate. This indicates that the estimation of a is relatively easy 
and does not require any sophisticated choice of L. Some exceptions to this 
rule do exist, though, as exemplified in Figure 4, right panels, where for the 
case n = 100, y = 3.25, g - g, - 4x(1 - x) and a" 0.25, the estimates 6; 
turn negative for larger values of L. 



FIG.3. Simulated examples. The upper panels show scatterplots for n = 100 data, generated 
with smooth functions g ,  = 0 and error variance u 2= 0.25. The lower panels display estimates 
TI (solid) and (if (dashed) (3.12), obtained by fitting th'e as,ymptotic simple linear model, i n  
dependency on L. The two left panels are for the case of no jumps, y = 0, and the two right panels 
are for the case y = 3.25, with superimposed step function h (5.1). 
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FIG.4. Simulated examples. The upper panels show scatterplots for n = 100 data, generated 
with smooth functions g:, = 4 x ( 1  - x )  and error uariance (r2= 0.25. The lower panels display 
estimates 9,  (solid) and i?:(dashed) (4.12), obtained b,y fitting the asymptotic quadratic model, 
i n  dependency on L. The two left panels are for the case of no junzps, y = 0, and the two right 
panels are for the case y = 3.25, with superimposed step function h (5.1). 



Flc. 5. Simulated examples. The upper panels show scattc.rplots for n -= 1000 data, generated 
with smooth functions gl - 0 and error variance (7' = 1.0. The lower panels display estimates 9,  
(solid) and (i;(dashed) (3,121, obtained by fitting the asymptotic simple linear model, i n  
dependency on L. The two lc$ panels are for the rase of no jumps, y = 0, and the two right panels 
are for the case y - 3.25, with superimposed step funci io~~ h (5.1). 
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FIG.6 .  Simulated examples. The upper pands show scatterplots for n = 1000 data, gen,erated 
with smooth functions g s  - 4 x ( 1  - x) and error variance (r2 = 1.0. The lower punels display 
estimates q2 (solid) and $2 (dashed)(4.121, obtained by fitting the asymptotic quadratic model, 
i n  dependency on L. The two left panels are for the case of no jumps, y = 0 ,  and the two right 
pan,els are for the case y = 3.25, with superimposed step function h (5.1). 
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The estimation of y 	 is seen to be far less stable, especially for the cases 
with sample size n = 100 (Figures 3 and 4). These and other examples 
indicate that for small values of L, the functions ?(L) typically display 
oscillatory behavior whereas for very large values of L, the estimates are 
trailing off, and become biased. In nearly all situations, a value for L which 
leads to reasonably good estimates lies in between these two extremes. 

These findings are corroborated when looking at mean estimates for q2 
and (i,2 obtained from 500 simulations as shown in Figure 7. The left panels 
are always for y = 0, the right panels for y = 1, and the estimates for y in 
dependency on L are solid curves, while the estimates for cr2 are dashed 
curves. The top two panels in (a) are for n = 100; all the others are for 
n = 1000. These average estimates are seen to be well on target irrespective 
of the value of L for (r2 and in middle ranges of L for y as well. Similar 
observations can be made for the mean squared error of ?,, 7, as functions of 
L (results not reported). 

5.2. Choice of L. The simulations indicate that the choice of the span size 
L is critical for the estimation of y in most cases, while it does not matter 
much for the estimation of a 2 .  For the applications, an empirical, data-de- 
pendent method for the choice of L is needed. We propose the plateau method 
which is inspired by the simulation results, in particular, Figure 7. The best 
results are obtained in a range of L's where the estimates ?(L) are relatively 
stable. This "plateau" is reached in most cases after an initial period of rapid 
oscillations for small L and prior to a trend which sets in for large values of 
L and which is biasing the estimates upward from the target values. 

The plateau method can be implemented in a variety of ways. We found 
the following version to be particularly successful: First define a function 

where Lo = max([n/50], 2) for a sample size n, and ?(i) stands for Tl(i) or 
?,(i), choosing i as the span size. This can be interpreted as a derivative 
estimate of ?(.) at L, using a window smoother with window [ L - L,, L + Lo], 
and ignoring normalizing constants. Then obtain 

Similar criteria which are also useful but in our simulations came out 
somewhat inferior are 

and 

1 L + L ,  

(5.4) 	i= arg min C ?W2- ,
2Lo + 1L-I,-L, ,  2Lo + 1 , & , - L o  



.I = h '9z.0 = o '0 EZ 18 G 8 '0001 = u :?y8?.4 .lam07 fo = X. '9z.0 = D '0 - 18 = 8 '0001 = u 
:@I lam07 i~ = h '9z.0 = Zo '0 18 r 8 '001 = u : ? y 8 ? ~laddo :O = A. '9z.0 = ,o '0 = I8 = 8 '001 = u 
:?Jar laddo ( n )  :slaund sno?ioa ay? JOJ smolloJ sn ado pauzn?qo adam saninn ay? qnzym lapun s~a?awo~od a y j  
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Simulation results for MSE's of estimates ql ,  q,, el2,ri; ' 

Selected L 
Case (with std. dev.) for MSE X 10"or MSE x lo4 for 

Parameter Function 
Y g 41 42 41 9 ,  e; ;; 

0 1 196i70) 187(52) 2.45 17.9 1.58 1.51 
0 2 156i22) 187(54) 16.9 16.3 1.37 1.72 
0 3 157i45) 177(41) 242 19.2 2.10 1.55 
1.0 1 235i128) 180(41) 65.4 75.7 9.61 18.3 
1.0 2 148(20) 180(40) 195 74.8 2.04 1.85 
1.0 3 145(19) 180(39) 1172 78.2 3.93 1.68 
3.25 1 223i121) 185(42) 688 221 88.6 2.24 
3.25 2 252i137) 183i41) 1682 210 2.00 2.06 
3.25 3 146(63) 182i40) 1225 207 4.03 2.06 

"In various situations with auxiliary paramctcr L sclected by the platcau method (5.2). 
Error variance cr" 0.25, sample size n = 1000. Results are for 1000 simulations. Parameter y 
is the sum of squared jump sizes, and thc smooth part of the rcgrcssion function was selected as 
g, - 0, g, - x and g ,  = 4x (1  - 3;). 
Besides MSE's, thc tablc also contains means and standard deviations for the sclected valucs 
(5.2) for both q, and q,. 

the latter choosing L in such a way as to minimize the variance of ?(.) in the 
local window [ L - Lo, L + Lo]. The idea behind criteria (5.2), (5.3) is that (1) 
i will not be chosen from within the early oscillation period (too small L's), 
as there the derivative will change sign over a span of size Lo and therefore 
E will not satisfy E(L - i) > 0 for 0 < i 5 Lo for L's chosen from a region 
where oscillations occur; (2) will also not be chosen from within the 
right-hand region where a monotone (upward or downward) trend and there- 
fore bias occurs (too large L's). Instead, it is likely that will be chosen from 
somewhere in the area of the plateau, where flat but sustained upward 
trends occur fairly regularly. 

This approach worked well in simulations; the resulting fully data-based 
estimates for y and (r yielded mean squared errors as listed in Table 1. It is 
clear from this table that data-based estimation of the error variance c2in 
the presence of jump discontinuities works well with this method in almost 
all cases. Regarding the estimation of y, a more mixed picture emerges. As a 
rule, estimates 7, (4.12) based on the asymptotic quadratic model have 
smaller bias but in some cases substantially larger variance than estimates 
7, (3.12), which are based on the asymptotic simple linear model. The overall 
results for mean squared errors show that the estimates (i,2 for the error 
variance (r are mostly better than estimates (if.Also, with the exception of 
the cases where g = g ,  -- 0, y = 0 and g = g ,  = 0, y = 1.0, 7, is better than 
7, in terms of MSE. For the cases where n was small or (r2 was large, the 
comparison between the two estimators was not as clear-cut. Nevertheless, 
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0.0 1.O 2.0 3.0 0.0 1.O 2.0 3.0 

Gamma Gamma 

Gamma Gamma 

FIG.8. Empirical potuer /i)r the usynzptotic level a test No:y = 0 ucrsus El,: y > 0, n - 0.1, 
colnputed fionz 1000 sirr~ulations,in dependcney on y > 0 and hased oil estinzutes T,, iri2 (4.1%). 
San1,ple sizes rl = 30 (short dashed), n - 100 (solid) and n - 1000 ilotzg dashed). ?'he param(.-
ters j i~r  theparlcls are upper lefl: g ,  = 0 ,  w 2  = 0.025, upper right: g ,  - x,  cr2 = 0.025, lowc~r left: 
g ,  = 0, cr" 0.25, lolutrr right: g ,  = x, crZ = 0.25. 
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we recommend using the estimates T2 and G;. We also note the remarkable 
stability of the average chosen L by means of the plateau method for 7,. 

It is also of interest to investigate the empirical power of the test for Ho: 
y = 0 as a function of y, using the plateau method of choosing L and thus a 
completely data-driven procedure. The results are shown in Figure 8 for 
asymptotic level a tests with a = 0.1, n = 30, 100 and 1000 and four 
different situations, including different smooth functions and error variances. 
These results indicate that the test has good power for n = 1000 but rela- 
tively low power when n = 30 or n = 100 and the error variance is high. 

The code implementing estimators (3.12) and (4.12) and the plateau method 
(6.2) has been written in Fortran and is available from the authors, along 
with the infant growth data discussed in the next section. 

6. Further analysis of infant growth data. A preliminary analysis 
with nonparametric regression methods incorporating jump discontinuities 
was presented in Section 2. The methods described there provide a variety of 
fits, but cannot resolve the model selection problem, namely whether a 
smooth or rather a discontinuous model is appropriate for these data. This 
model selection problem is at  the heart of the scientific controversy on the 
existence of saltatory growth. The estimates .j12(L) and &;(L), using the 
asymptotic quadratic model for these data, are shown in Figure 9; we note 
that the asymptotic simple linear model did not provide reasonable estimates 
for this case. 

Figure 9 shows a weakly expressed plateau. We choose L = 10 and obtain 
estimates T, = 0.70 and 6; = 0.024. Assuming normal errors, and under the 
null hypothesis y = 0, the corresponding estimated variances according to 

n 

(4.14) are var(T,) = 1.2 . lop3 ,Gr(&:)= 1.5 . lop4.  This provides for a highly 
significant z-value of z = 20.08 in the test statistic, and thus the smooth 
model would be rejected in favor of a model containing discontinuities. These 
results have to be viewed with a grain of salt, as they rely on asymptotic 
approximations and the normality and independence assumptions for the 
errors. One needs to keep in mind that the sample size of n = 30 available 
here is quite small. 

Nevertheless, this analysis in conjunction with the findings in Section 2 
points toward the existence of periods of fast growth which occurs in a 
relatively short time. The fast growth can be modelled as a discontinuity 
when the analysis is based on daily measurements. This does not mean that a 
mathematical jump discontinuity exists in reality, and a much finer grid of 
measurements is likely to resolve the apparent discontinuity into a short 
period of fast growth. Furthermore, one cannot draw broad conclusions based 
on limited data from one subject. 

The smooth and discontinuous fits in Figure 2 have been monotonized as 
growth curves of course must be monotone; see Appendix A.2. Sum of squared 
jump sizes as well as error variances were calculated for both unrestricted 
(not necessarily monotone) as well as monotonized versions. Error variances 
were estimated by the average squared residuals according to the formula 



FIG.9. Estimates q2 (solid) artd 10iri2 (dasI7ed) fbr the crouin-heel lengths data as a function 
of L. 

(A.2) given in Appendix A.2. These values and also individual jump sizes for 
nonmonotone and monotone fits are listed in Table 2. 

Since the simulations have shown that even for modest sample sizes the 
error variance estimate i: is quite stable and has low variance, we can 
compare GI;" = 0.024 with the error variances produced from the residuals of 
the various models. As it happens, i z  hl ls  in between the values obtained 
for the smooth fit G 2  = 0.030 and for the smooth fit with one discontinuity 
( i 2  = 0.019). The estimate 7, = 0.70 is somewhat larger than the estimated 
sum of squared jump sizes with three discontinuities (7 = 0.62). We cau-
tiously conclude from this and the test results rejecting H,: y = 0 that these 
data are better represented by models containing jump discontinuities rather 
than models assuming a smooth or linear function. We note that Figure 8 
indicates that for u 2= 0.025 and n = 30 the power of the proposed test is 
reasonable. 
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TABLE2 

Estimated error uariances &%and jump sizes fir the cror*.~~-heel lerjgths data* 

Cr2(x102) Nonmonotone at Monotone at non- 9 
Nonmono- Mono- mono- mono-

Fit tone tone 72.5 77.5 86.5 72.5 77.5 86.5 tone tone 

Lincar 4.2 4 . 2 0 0 0 0 0 0 0 0 
Smooth 3.0 3 . 0 0 0 0 0 0 0 0 0 
Smooth with 1.9 1.9 0 0 0.70 0 0 0.57 0.49 0.32 

onc jump 
Smooth with 1.8 1.8 0 0.28 0.70 0 0.28 0.57 0.57 0.40 

two jumps 
Smooth with 1.6 1.7 0.22 0.28 0.70 0.21 0.28 0.57 0.62 0.44 

thrce jumps 
Asymptotic 2.4 0.70 

quadratic 
modcl +, , &i2 

*Based on various monotone and nonmonotonc fits. 

Hcrc, + denotes thc estimated sum of squared jump sizes 


7. Proofs of the main results. 

7.1. Proof of Theorem 4.1. In order to calculate the first two moments of 
our estimator, we define for 15 j IL and A, p E R the quantities 

and obtain 

Furthermore we find from (3.31, 
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where g is the smooth and h the nonsmooth part of f .  Obviously, E(T,<) = 

O(h2/n2), which is (3.4). 
In order to find the expectations of p and TI, observe that by Lemma A1 

below, Cub = 1, Cahk = 0 and CPk = 0, CPhh = n - L, CIuhlh2 = O(L2), 
C I Pk1 k = O(Ln). Hence 

which had to be shown. 
To obtain the covariance matrix, we calculate for arbitrary h, p E R the 

variance of ( A / ?  + p?,), 

s2:= var h z52, + p C PjZj/ ,-1 

I. 

. /  j= 1 

and obtain 
L 

var( iWk77h j > 770.s2= = E W k W l  ~o~(77k 
k - 1  k , l = l  

Furthermore, for 1I h, 1 i L, 

Here we used the fact that f = g + h and, observing (All, 



DISCONTINUOUS VERSUS SMOOTH REGRESSION 

For instance, 

and similarly for the other terms. 
Thus we obtain (3.5) and 

Now using Lemma Al, we conclude that 

From (if = i p  and (A3) we find that 

48p 2y(r+ 
5L ( 1  + o(1)) 

for any A, p E R, which yields Theorem 4.1. 

7.2. Proof of Theorem 4.2. We start by showing the asymptotic normality 
of ((if, for the case y = 0 in detail. This will follow from the asymptotic 
normality of ( 6, ?,)" = B '((if, where 
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By the Cramkr-Wold device it is sufficient to show for any pair (A, P) t R~ 
that 

x.,= n m ( 8- E( 8))+ p a ( ? l  - E ( q l ) )  

is asymptotically normal. We will show that 

that is, 

The strategy for the proof is now as follows. After identifying the leading 
terms of 7 and thus Xn we are left with xn,which is essentially a weighted 
U-statistic as discussed, for example, in Lee (1990). However, xndoes not 
conform to the usual assumptions. Adopting the projection method [see, e.g., 
Serfling (19801, Section 5.31, we therefore project x , ~onto the E , ,  obtaining in 
the process a weighted sum of independent random variables which is shown 
to be asymptotically normal in Lemma A3. In a last step, it is shown that this 
projection is sufficiently close to xFL(Lemma A4). 


Now, as in the previous proof, 


Therefore, 

with weights (observe these are the suitably normalized wl,from above) 

Defining 
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we decompose r.v.'s qh (7.21, 

(7.5) v k  = !k,n + rk,r~. 

By calculations as in the proof of Theorem 4.1, we find 

using assumption (A4). Furthermore we observe in the proof of Theorem 4.1 
that var(C;=, w k r k ,.) = o(1) (note that y = 01, hence this is a remainder term 
and it is sufficient to investigate the term 

L 

(7.6) 'n = C ~ h , r 3 h , n .  
k =  1 

Now consider the projection 

Lemmas A3 and A4 demonstrate asymptotic normality of fnand ~ ( f ~ ~-

x n I 2+ 0 as n + m, and thus imply (7.3). 

APPENDIX 

A.1. Technical lemmas. In the following, we use the notation 

for indices v 2 2. 
Using the notation of (7.1), somewhat tedious but simple algebra yields the 

following lemma. 

LEMMAAl.  

and hence 

L 4h2 12nZp2 12hpn 
(ii) wj2 = -(I + o(1)) + -

L L3 ( 1  + ( 1 )  -7( 1  + o(1));
.; = 1 

L L 6n2 2 n  
(iii) C CY,"j- 1 ,  C ~ J 2 j- -- C a . ~ . j- --

L2 ' j= l  
J J 

j= 1 j =  1 L ' 
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and hence 

L L 

(v) C w,,= A,  wjj= p ( n  - L ) ;
j.= 1 j.? 1 

(viii) 

LEMMAA2. For the quantities c,,,,, 1 I v 5 L,  defined in  (A.0,  we hnve 

7-


( i> c,, ,,,, = A ~ N- L / n  - h / G ;  

(ii) 

( i i i)  

(i.1 

(v) 
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PROOF.From (7.4), 

and 

Then (v) is obvious from (ii) and (iv). 

LEMMAA3. For ?n as in (7.71, 

Fn jd.N(o,4A2(p4- ( r4)  + F p 2 ( p q  - (r4))  
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PROOF.By the independence of the residuals we obtain 

=: In+ IIn+ III, say. 

From Lemma A2, el,+,, - A/ 6from which we conclude that var(IIIn) = 

O(L/n) and thus III, +,, 0. Since Inand IInare independent for each n, we 
obtain that ?n is asymptotically normal if I,, II, are asymptotically normal. 
Obviously we have by the usual CLT that  

InjdJ'"(0,4A2(p4- u4)). 

From Lemma A2, 

and 

This implies asymptotic normality for a weighted sum of i.i.d. random vari- 
ables [see, e.g., Billingsley (1986), page 3801, and therefore 

L 

2 c w , n s p  +d ,N(o, 6 P 2 ( p 4  - ( ~ ~ ) / 5 ) .  
P- 1 

2Observing that c L ~ +  ,,,C;=, sp+,-, +,0, we conclude 

and this implies the result for the case y = 0. For the case y > 0, we have to 
-

? k , n  := ̂ / lh,n + 2c,"::' (h((j + k)/n) - h(( j / n ) ) ( ~ , + ~  - <,)/y k , n  
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(n - L)  in the proof above and exercise more care in the partitioning of f n .  
We omit the details. 

LEMMAA4. For xnas in (7.6) and fnas in (7.7), 

2 
E -Xn) - o a s n  + m. 

PROOF.From the proof of Lemma A3, it follows that var(fn! - var(xn)= 

O(1) and hence it suffices to prove that cov(Tn, x n )  - var(Tn). Using the 
above representations for f n ,  Lemma A2, and noting that 

we find 
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- var(fn) .  

Considering now the more complicated case of estimators &i2,?2 [see 
(4.12)], we define in analogy to (7.1) the quantities 

Lemma A1 is replaced by the following result, which we state without proof. 
Analogous developments to those given in Section 7, then lead to results 
(4.13) and (4.14). 

LEMMAA5. Under (A1)-(A3) we have 

I, 9 IJ 2 I, n 
(iii) c &;--- C @ - 1 7 2 7 ,  C &,$, - -108-; 

j=1 4L ' j=  1 LJ j-1 L~ 

A.2. More on the preliminary change-point analysis. We provide 
here a brief description of some further details of the method used in Section 
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2; compare also Braun and Muller (19981, Sections 3.4 and 3.5. 
Let I = [a,, a,] denote the domain of the data xi, let l >  0 be a small 

constant and let It= [a ,  + l ,  a, - [I. For t E I(, local lines are fitted on the 
segments SP(t)  = ( -m,  t ]  n I and S+( t )  = [ -a,t) n I. These fits are ob-
tained by locally weighted least squares [compare Fan and Gijbels (1996)l. 
The fit at  a point x E S+(t) is given by the estimated intercept 6 +(x) of the 
local fitted line, centered at x and taking into account only data (xi, yi) 
where xi E S+(t ) .Obtaining the minimizers & +,/3 + of the weighted least 
squares criterion 

with respect to a and p, we find Tu +(x) = & ,. Here, b = b, is a sequence of 
bandwidths and K is a nonnegativePweight (kernel) function, often chosen as 
K(z) = (1 - z2),.. We then define 

A(t) = 6+( t )  - &_ ( t )  . 
Fixing the number v of change-points and choosing a small constant p > 0, 
denoting N{,(x) = {z E I :  Ix - zl Ip},  we then obtain the estimated change- 
point locations 

Setting i(,,= a,, = a2 ,  and denoting the ordered sample of ?,'s by 
( i . . . , , the i, induce a partition I = u:+: S,, where S, = 

[ i ( , P l ) , ~ ~ , ~ l ,= 3 ,..., v +  1.i 

In a next step, we fit smooth functions on the segments S,, by choosing 

x E SJ and using only data (x,, y,) for which x, E S,, leading to the fitted 
values $(x,). The automatic boundary adjustment feature of local polynomial 
fitting coupled with fast rates for the estimated change-points then ensures 
consistent estimation in the L P  sense [extending results of Muller (1992) to 
the situation of multiple change-points]. 

For various values of v ,  this procedure produces results as those shown in 
Figure 3 .  For the two applications of the smoothing method (first to deter- . Amine T,, . . . ,?,,, then to smooth the data on the induced segments), band- 
widths need to be selected. The bandwidth choice for estimating the function 

can be taken from a global bandwidth choice for smoothing the data. 
Alternatively, this choice could be incorporated into the cross-validation 
criterion as in Braun and Miiller (1998). For the bandwidth choices for 
smoothing on the segments, we adopted a version of a pilot method [analo- 
gous to Miiller (1985)l. This method estimates and minimizes the finite 
integrated mean squared error of a linear smoother by substituting separate 
estimates for variance and bias. 
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Another special feature for the growth application is that we included a 
simple monotonization step for the estimated curves on the segments, in 
order to ensure that the estimated growth curve would be monotone increas- 
ing [using a method proposed by Friedman and Tibshirani (1984)l. This 
monotonization has the effect of possibly altering (in general, reducing) 
estimated jump size estimates given by A(?,), j = 1,. . . , v. These effects can 
be seen in Table 2, where the estimated jump sizes A(+,) are indeed found to 
be smaller for the monotonized estimates as compared to the unrestricted 
estimates. Also, not unexpectedly, the fits under monotony occasionally lead 
to higher residual error variances, which are determined by 
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